miércoles, 18 de junio de 2014

FUSIÓN Y FISIÓN NUCLEAR

En física nuclearfusión nuclear es el proceso por el cual varios núcleos atómicos de carga similar se unen y forman un núcleo más pesado. Simultáneamente se libera o absorbe una cantidad enorme de energía, que permite a la materia entrar en un estado plasmático.
La fusión de dos núcleos de menor masa que el hierro (en este elemento y en el níquel ocurre la mayor energía de enlace nuclear por nucleón) libera energía en general. Por el contrario, la fusión de núcleos más pesados que el hierro absorbe energía. En el proceso inverso, la fisión nuclear, estos fenómenos suceden en sentidos opuestos.
En el caso más simple de fusión, en el hidrógeno, dos protones deben acercarse lo suficiente para que la interacción nuclear fuerte pueda superar su repulsión eléctrica mutua y obtener la posterior liberación de energía.
En la naturaleza ocurre fusión nuclear en las estrellas, incluido el Sol. En su interior las temperaturas son cercanas a 15 millones de grados Celsius.1 Por ello a las reacciones de fusión se les denomina termonucleares. En varias empresas se ha logrado también la fusión (artificial), aunque todavía no ha sido totalmente controlada.
Sobre la base de los experimentos de transmutación nuclear de Ernest Rutherford, conducidos pocos años antes, Mark Oliphant, en 1932, observó por primera vez la fusión de núcleos ligeros (isótopos de hidrógeno).
Posteriormente, durante el resto de ese decenioHans Bethe estudió las etapas del ciclo principal de la fusión nuclear en las estrellas.
La investigación acerca de la fusión para fines militares se inició en la década de 1940 como parte del Proyecto Manhattan, pero no tuvo éxito hasta 1952. La indagación relativa a fusión controlada con fines civiles se inició en la década de 1950, y continúa hasta el presente.


Para que pueda ocurrir la fusión debe superarse una importante barrera de energía producida por la fuerza electrostática. A grandes distancias, dos núcleos se repelen debido a la fuerza de repulsión electrostática entre sus protones, cargados positivamente.
Sin embargo, si se pueden acercar dos núcleos lo suficiente, debido a la interacción nuclear fuerte, que en distancias cortas es mayor, se puede superar la repulsión electrostática.
Cuando un nucleón (protón o neutrón) se añade a un núcleo, la fuerza nuclear atrae a otros nucleones, pero -debido al corto alcance de esta fuerza- principalmente a sus vecinos inmediatos. Los nucleones del interior de un núcleo tienen más vecinos nucleones que los existentes en la superficie.
Ya que la relación entre área de superficie y volumen de los núcleos menores es mayor, por lo general la energía de enlace por nucleón debido a la fuerza nuclearaumenta según el tamaño del núcleo, pero se aproxima a un valor límite correspondiente al de un núcleo cuyo diámetro equivalga al de casi cuatro nucleones.
Por otra parte, la fuerza electrostática es inversa al cuadrado de la distancia. Así, a un protón añadido a un núcleo le afectará una repulsión electrostática de todos los otros protones.
Por tanto, debido a la fuerza electrostática, cuando los núcleos se hacen más grandes, la energía electrostática por nucleón aumenta sin límite.
En distancias cortas la interacción nuclear fuerte (atracción) es mayor que la fuerza electrostática (repulsión). Así, la mayor dificultad técnica para la fusión es conseguir que los núcleos se acerquen lo suficiente para que ocurra este fenómeno. Las distancias no están a escala.
El resultado neto de estas fuerzas opuestas es que generalmente la energía de enlace por nucleón aumenta según el tamaño del núcleo, hasta llegar a los elementos hierro y níquel, y un posterior descenso en los núcleos más pesados.
Finalmente la energía de enlace nuclear se convierte en negativa, y los núcleos más pesados (con más de 208 nucleones, correspondientes a un diámetro de alrededor de seis nucleones) no son estables.
Cuatro núcleos muy estrechamente unidos, en orden decreciente de energía de enlace nuclear, son 62Ni,58Fe56Fe, y 60Ni.2 A pesar de que el isótopo de níquel 62Ni es más estable, el isótopo de hierro 56Fe es una orden de magnitud más común. Esto se debe a mayor tasa de desintegración de 62Ni en el interior de las estrellas, impulsada por absorción de fotones.
Una notable excepción a esta tendencia general es el núcleo helio 4He, cuya energía de enlace es mayor que la del litio, el siguiente elemento por incremento de peso.
En el principio de exclusión de Pauli se proporciona una explicación a esta excepción: debido a que los protones y los neutrones son fermiones, no pueden existir en el mismo estado.
A causa de que el núcleo del 4He está integrado por dos protones y dos neutrones, de modo que sus cuatro nucleones pueden estar en el estado fundamental, su energía de enlace es anormalmente grande. Cualquier nucleón adicional tendría que ubicarse en estados de energía superiores.
Tres ventajas de la fusión nuclear son:
a) en gran parte sus desechos no revisten la problemática de los provenientes de fisión;
b) abundancia -y buen precio- de materias primas, principalmente del isótopo de hidrógeno deuterio (D);
c) si una instalación dejara de funcionar se apagaría inmediatamente, sin peligro de fusión no nuclear.
En un diseño prometedor, para iniciar la reacción, varios rayos láser de alta potencia transfieren energía a una pastilla de combustible pequeña, que se calienta y se genera una implosión: desde todos los puntos se colapsa y se comprime hasta un volumen mínimo, lo cual provoca la fusión nuclear.

Confinamiento electrostático estable para fusión nuclear

Como se puede apreciar en el dibujo de arriba, se basa en circunscripción total de iones de hidrógeno, confinados electrostáticamente.
Los beneficios de este confinamiento son múltiples:
  • El grosor de la esfera de cobre anula la inestabilidad causada por errores de simetría.
  • La ionización del hidrógeno se genera fácilmente por el campo eléctrico que absorbe los electrones sin disminuir la intensidad de ese campo.
  • Se puede obtener un campo eléctrico intenso, lo cual evitaría fuga de los iones de hidrógeno.
  • La energía necesaria es menor que la consumida por un reactor de fusión que genere un campo electromagnético para confinar los iones.
La fusión nuclear se logra por medio de compresión-descompresión, aumentando o disminuyendo la intensidad del campo eléctrico. Para ello se aumenta o se disminuye la velocidad del generador de electricidad.

FISIÓN

En física nuclear, la fisión es una reacción nuclear, lo que significa que tiene lugar en el núcleo atómico. La fisión ocurre cuando un núcleo pesado se divide en dos o más núcleos pequeños, además de algunos subproductos como neutrones libresfotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta(electrones y positrones de alta energía).


Mecanismo

La fisión de núcleos pesados es un proceso exotérmico, lo que supone que se liberan cantidades sustanciales de energía. El proceso genera mucha más energía que la liberada en las reacciones químicas convencionales, en las que están implicadas las cortezas electrónicas; la energía se emite, tanto en forma de radiación gamma como de energía cinética de los fragmentos de la fisión, que calentarán la materia que se encuentre alrededor del espacio donde se produzca la fisión.
La fisión se puede inducir por varios métodos, incluyendo el bombardeo del núcleo de un átomo fisionable con una partícula de la energía correcta; la partícula es generalmente un neutrón libre. Este neutrón libre es absorbido por el núcleo, haciéndolo inestable (a modo de ejemplo, se podría pensar en la inestabilidad de una pirámide de naranjas en el supermercado, al lanzarse una naranja contra ella a la velocidad correcta). El núcleo inestable entonces se partirá en dos o más pedazos: los productos de la fisión que incluyen dos núcleos más pequeños, hasta siete neutrones libres (con una media de dos y medio por reacción), y algunos fotones.
Los núcleos atómicos lanzados como productos de la fisión pueden ser varios elementos químicos. Los elementos que se producen son resultado del azar, pero estadísticamente el resultado más probable es encontrar núcleos con la mitad de protones y neutrones del átomo fisionado original.
Los productos de la fisión son generalmente altamente radiactivos, no son isótopos estables; estos isótopos entonces decaen, mediante cadenas de desintegración.

Fisión fría y rotura de pares de nucleones

La mayor parte de las investigaciones sobre fisión nuclear se basan en la distribución de masa y energía cinética de los fragmentos de fisión. Sin embargo, esta distribución es perturbada por la emisión de neutrones por parte de los fragmentos antes de llegar a los detectores.
Aunque con muy baja probabilidad, en los experimentos se han detectado eventos de fisión fría, es decir fragmentos con tan baja energía de excitación que no emiten neutrones. Sin embargo, aún en esos casos, se observa la rotura de pares de nucleones, la que se manifiesta como igual probabilidad de obtener fragmentos con número par o impar de nucleones. Los resultados de estos experimentos permiten comprender mejor la dinámica de la fisión nuclear hasta el punto de escisión, es decir, antes de que se desvanezca la fuerza nuclear entre los fragmentos.

Inducción de la fisión

La fisión nuclear de los átomos fue descubierta en 1938 por los investigadores Otto Hahn y Fritz Strassmann a partir del trabajo desarrollado por el propio Hahn junto aLise Meitner durante años anteriores. Por este descubrimiento recibió en 1944 el Premio Nobel de química. El estudio de la fisión nuclear se considera parte de los campos de la química nuclear y la física.
  • Aunque la fisión es prácticamente la desintegración de materia radiactiva, comenzada a menudo de la manera más fácil posible (inducido), que es la absorción de un neutrón libre, puede también ser inducida lanzando otras cosas en un núcleo fisionable. Estas otras cosas pueden incluir protones, otros núcleos, o aún los fotones de gran energía en cantidades muy altas (porciones de rayos gamma).
  • Muy rara vez, un núcleo fisionable experimentará la fisión nuclear espontánea sin un neutrón entrante.
  • Cuanto más pesado es un elemento más fácil es inducir su fisión. La fisión en cualquier elemento más pesado que el hierro produce energía, y la fisión en cualquier elemento más liviano que el hierro requiere energía. Lo contrario también es verdad en las reacciones de fusión nuclear (la fusión de los elementos más livianos que el hierro produce energía y la fusión de los elementos más pesados que el hierro requiere energía).
  • Los elementos más frecuentemente usados para producir la fisión nuclear son el uranio y el plutonio. El uranio es el elemento natural más pesado; el plutonio experimenta desintegraciones espontáneas y tiene un período de vida limitado. Así pues, aunque otros elementos pueden ser utilizados, estos tienen la mejor combinación de abundancia y facilidad de fisión.


Efectos de los isótopos

El uranio natural se compone de tres isótopos: 234U (0,006%), 235U (0,7%), y 238U (99,3%). La velocidad requerida para que se produzca un acontecimiento de fisión y no un acontecimiento de captura es diferente para cada isótopo.
El uranio-238 tiende a capturar neutrones de velocidad intermedia, creando 239U, que decae sin fisión a plutonio-239, que sí es fisible. Debido a su capacidad de producir material fisible, a este tipo de materiales se les suele llamar fértiles.
Los neutrones de alta velocidad (52.000 km/s), como los producidos en una reacción de fusión tritio-deuterio, pueden fisionar el uranio-238. Sin embargo los producidos por la fisión del uranio-235, de hasta 28.000 km/s, tienden a rebotar inelásticamente con él, lo cual los desacelera. En un reactor nuclear, el 238U tiende, pues, tanto a desacelerar los neutrones de alta velocidad provenientes de la fisión del uranio-235 como a capturarlos (con la consiguiente transmutación a plutonio-239) cuando su velocidad se modera.
El uranio-235 fisiona con una gama mucho más amplia de velocidades de neutrones que el 238U. Puesto que el uranio-238 afecta a muchos neutrones sin inducir la fisión, tenerlo en la mezcla es contraproducente para promover la fisión. De hecho, la probabilidad de la fisión del 235U con neutrones de velocidad alta puede ser lo suficientemente elevada como para hacer que el uso de un moderador sea innecesario una vez que se haya suprimido el 238U.
Sin embargo, el 235U está presente en el uranio natural en cantidades muy reducidas (una parte por cada 140). La diferencia relativamente pequeña en masa entre los dos isótopos hace, además, que su separación sea difícil. La posibilidad de separar 235U fue descubierta con bastante rapidez en el proyecto Manhattan, lo que tuvo gran importancia para su éxito.

RADIACTIVIDAD

La radiactividad o radioactividades un fenómeno físico por el cual los núcleos de algunos elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas radiográficas,ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como pueden ser núcleos de helioelectrones o positronesprotones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos, inestables, que son capaces de transformarse, o decaer, espontáneamente, en núcleos atómicos de otros elementos más estables.
La radiactividad ioniza el medio que atraviesa. Una excepción lo constituye el neutrón, que posee carga neutra (igual carga positiva como negativa), pero ioniza la materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación: alfabetagamma y neutrones.
La radiactividad es una propiedad de los isótopos que son "inestables", es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental, deben perder energía. Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X) o de sus nucleones (rayo gamma) o variando el isótopo (al emitir desde el núcleo electronespositronesneutronesprotones o partículas más pesadas), y en varios pasos sucesivos, con lo que un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de los siglos, acaba convirtiéndose en plomo.
La radiactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia yradiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras).
La radiactividad puede ser:
  • Natural: manifestada por los isótopos que se encuentran en la naturaleza.
  • Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.


Radiactividad natural

En 1896 Henri Becquerel descubrió que ciertas sales de uranio emiten radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro. Hizo ensayos con el mineral en caliente, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo del átomo.
El estudio del nuevo fenómeno y su desarrollo posterior se debe casi exclusivamente al matrimonio de Marie y Pierre Curie, quienes encontraron otras sustancias radiactivas: el torio, el polonio y el radio. La intensidad de la radiación emitida era proporcional a la cantidad de uranio presente, por lo que Marie Curie dedujo que la radiactividad es una propiedad atómica. El fenómeno de la radiactividad se origina exclusivamente en el núcleo de los átomos radiactivos. Se cree que se origina debido a la interacción neutrón-protón. Al estudiar la radiación emitida por el radio, se comprobó que era compleja, pues al aplicarle un campo magnético parte de ella se desviaba de su trayectoria y otra parte no.
Pronto se vio que todas estas reacciones provienen del núcleo atómico que describió Ernest Rutherford en 1911, quien también demostró que las radiaciones emitidas por las sales de uranio pueden ionizar el aire y producir la descarga de cuerpos cargados eléctricamente.
Con el uso del neutrón, partícula teorizada en 1920 por Ernest Rutherford, se consiguió describir la radiación beta.
En 1932James Chadwick descubrió la existencia del neutrón que Rutherford había predicho en 1920, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración son en realidad neutrones.

Radiactividad artificial

Símbolo utilizado tradicionalmente para indicar la presencia de radiactividad.
Nuevo símbolo de advertencia de radiactividad adoptado por la ISO en 2007 para fuentes que puedan resultar peligrosas. Estándar ISO #21482.
La radiactividad artificial, también llamada radiactividad inducida, se produce cuando se bombardean ciertos núcleos estables con partículas apropiadas. Si la energía de estas partículas tiene un valor adecuado, penetran el núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente. Fue descubierta por la pareja Jean Frédéric Joliot-Curie e Irène Joliot-Curie, bombardeando núcleos de boro y de aluminio con partículas alfa. Observaron que las sustancias bombardeadas emitían radiaciones (neutrones libres) después de retirar el cuerpo radiactivo emisor de las partículas de bombardeo. El plomo es la sustancia que mayor fuerza de impenetracion posee por parte de los rayos x y gamma.
En 1934 Fermi se encontraba en un experimento bombardeando núcleos de uranio con los neutrones recién descubiertos. En1938, en AlemaniaLise MeitnerOtto Hahn y Fritz Strassmann verificaron los experimentos de Fermi. En 1939 demostraron que una parte de los productos que aparecían al llevar a cabo estos experimentos era bario. Muy pronto confirmaron que era resultado de la división de los núcleos de uranio: la primera observación experimental de la fisión. En FranciaJean Frédéric Joliot-Curie descubrió que, además del bario, se emiten neutrones secundarios en esa reacción, lo que hace factible lareacción en cadena.
También en 1932, Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), y poco después Hans Bethedescribió el funcionamiento de las estrellas con base en este mecanismo.
El estudio de la radiactividad permitió un mayor conocimiento de la estructura del núcleo atómico y de las partículas subatómicas. Se abrió la posibilidad de convertir unos elementos en otros. Incluso se hizo realidad el ancestral sueño de losalquimistas de crear oro a partir de otros elementos, como por ejemplo átomos de mercurio, aunque en términos prácticos el proceso de convertir mercurio en oro no resulta rentable debido a que el proceso requiere demasiada energía.
El 15 de marzo de 1994, la Agencia Internacional de la Energía Atómica (AIEA) dio a conocer un nuevo símbolo de advertencia de radiactividad con validez internacional. La imagen fue probada en 11 países.

Clases y componentes de la radiación

Clases de radiación ionizante y cómo detenerla.
Las partículas alfa (núcleos de helio) se detienen al interponer una hoja de papel. Las partículas beta (electrones y positrones) no pueden atravesar una capa de aluminio. Sin embargo, los rayos gamma (fotones de alta energía) necesitan una barrera mucho más gruesa, y los más energéticos pueden atravesar el plom
como partículasdesintegraciones y radiación:
  1. Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Son desviadas por campos eléctricos y magnéticos. Son poco penetrantes, aunque muy ionizantes. Son muy energéticas. Fueron descubiertas por Rutherford, quien hizo pasar partículas alfa a través de un fino cristal y las atrapó en un tubo de descarga. Este tipo de radiación la emiten núcleos de elementos pesados situados al final de la tabla periódica (A >100). Estos núcleos tienen muchos protones y la repulsión eléctrica es muy fuerte, por lo que tienden a obtener N aproximadamente igual a Z, y para ello se emite una partícula alfa. En el proceso se desprende mucha energía, que se convierte en la energía cinética de la partícula alfa, por lo que estas partículas salen con velocidades muy altas.
  2. Desintegración beta: Son flujos de electrones (beta negativas) o positrones (beta positivas) resultantes de la desintegración de los neutrones o protones del núcleo cuando éste se encuentra en un estado excitado. Es desviada por campos magnéticos. Es más penetrante, aunque su poder de ionización no es tan elevado como el de las partículas alfa. Por lo tanto, cuando un átomo expulsa una partícula beta, su número atómico aumenta o disminuye una unidad (debido al protón ganado o perdido). Existen tres tipos de radiación beta: la radiación beta-, que consiste en la emisión espontánea de electrones por parte de los núcleos; la radiación beta+, en la que un protón del núcleo se desintegra y da lugar a un neutrón, a un positrón o partícula Beta+ y un neutrino, y por último la captura electrónica que se da en núcleos con exceso de protones, en la cual el núcleo captura un electrón de la corteza electrónica, que se unirá a un protón del núcleo para dar un neutrón.
  3. Radiación gamma: Se trata de ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta. Por ser tan penetrante y tan energética, éste es el tipo más peligroso de radiación.
Las leyes de desintegración radiactiva, descritas por Frederick Soddy y Kasimir Fajans, son:
  • Cuando un átomo radiactivo emite una partícula alfa, la masa del átomo (A) resultante disminuye en 4 unidades y el número atómico (Z) en 2.
  • Cuando un átomo radiactivo emite una partícula beta, el número atómico (Z) aumenta o disminuye en una unidad y la masa atómica (A) se mantiene constante.
  • Cuando un núcleo excitado emite radiación gamma, no varía ni su masa ni su número atómico: sólo pierde una cantidad de energía  (donde "h" es la constante de Planck y "ν" es la frecuencia de la radiación emitida).
Las dos primeras leyes indican que, cuando un átomo emite una radiación alfa o beta, se transforma en otro átomo de un elemento diferente. Este nuevo elemento puede ser radiactivo y transformarse en otro, y así sucesivamente, con lo que se generan las llamadas series radiactivas.

Causa de la radiactividad

En general son radiactivas las sustancias que no presentan un balance correcto entre protones o neutrones, tal como muestra el gráfico que encabeza este artículo. Cuando el número de neutrones es excesivo o demasiado pequeño respecto al número de protones, se hace más difícil que la fuerza nuclear fuerte debida al efecto del intercambio de piones pueda mantenerlos unidos. Eventualmente, el desequilibrio se corrige mediante la liberación del exceso de neutrones o protones, en forma departículas α que son realmente núcleos de helio, y partículas β, que pueden ser electrones o positrones. Estas emisiones llevan a dos tipos de radiactividad, ya mencionados:
  • Radiación α, que aligera los núcleos atómicos en 4 unidades másicas, y cambia el número atómico en dos unidades.
  • Radiación β, que no cambia la masa del núcleo, ya que implica la conversión de un protón en un neutrón o viceversa, y cambia el número atómico en una sola unidad (positiva o negativa, según si la partícula emitida es un electrón o un positrón).
La radiación γ, por su parte, se debe a que el núcleo pasa de un estado excitado de mayor energía a otro de menor energía, que puede seguir siendo inestable y dar lugar a la emisión de más radiación de tipo α, β o γ. La radiación γ es, por tanto, un tipo de radiación electromagnética muy penetrante, ya que tiene una alta energía por fotón emitido.

TEORÍA RELATIVIDAD, PREDECIBILIDAD Y CAOS

La teoría de la relatividad incluye tanto a la teoría de la relatividad especial y como a la relatividad general, formuladas porAlbert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y elelectromagnetismo.
La teoría de la relatividad especial, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzasgravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento.
La teoría de la relatividad general, publicada en 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana, aunque coincide numéricamente con ella para campos gravitatorios débiles y "pequeñas" velocidades. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
No fue hasta el 7 de marzo de 2010 cuando fueron mostrados públicamente los manuscritos originales de Einstein por parte de la Academia Israelí de Ciencias, aunque la teoría se había publicado en 1905. El manuscrito contiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, y fue donado por Einstein a la Universidad Hebrea de Jerusalén en 1925 con motivo de su inauguración.


Conceptos principales


Sello de correos soviético cuyo motivo es Albert Einstein con su famosa ecuaciónE=mc^2.
El presupuesto básico de la teoría de la relatividad es que la localización de los sucesos físicos, tanto en el tiempo como en el espacio, son relativos al estado de movimiento del observador: así, la longitud de un objeto en movimiento o el instante en que algo sucede, a diferencia de lo que sucede en mecánica newtoniana, no son invariantes absolutos, y diferentes observadores en movimiento relativo entre sí diferirán respecto a ellos (las longitudes y los intervalos temporales, en relatividad son relativos y no absolutos).

Relatividad especial

La teoría de la relatividad especial, también llamada teoría de la relatividad restringida, fue publicada por Albert Einstein en 1905 y describe la física del movimiento en el marco de un espacio-tiempo plano. Esta teoría describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales (no es aplicable para problemas astrofísicos donde el campo gravitatorio desempeña un papel importante).
Estos conceptos fueron presentados anteriormente por Poincaré y Lorentz, que son considerados como precursores de la teoría. Si bien la teoría resolvía un buen número de problemas del electromagnetismo y daba una explicación del experimento de Michelson-Morley, no proporciona una descripción relativista adecuada del campo gravitatorio.
Tras la publicación del artículo de Einstein, la nueva teoría de la relatividad especial fue aceptada en unos pocos años por la práctica totalidad de los físicos y los matemáticos. De hecho, Poincaré o Lorentz habían estado muy cerca de llegar al mismo resultado que Einstein. La forma geométrica definitiva de la teoría se debe aHermann Minkowski, antiguo profesor de Einstein en la Politécnica de Zürich; acuñó el término "espacio-tiempo" (Raumzeit) y le dio la forma matemática adecuada.nota 1El espacio-tiempo de Minkowski es una variedad tetradimensional en la que se entrelazaban de una manera insoluble las tres dimensiones espaciales y el tiempo. En este espacio-tiempo de Minkowski, el movimiento de una partícula se representa mediante su línea de universo (Weltlinie), una curva cuyos puntos vienen determinados por cuatro variables distintas: las tres dimensiones espaciales (x\ ,y\ ,z\ ) y el tiempo (t\ ). El nuevo esquema de Minkowski obligó a reinterpretar los conceptos de la métrica existentes hasta entonces. El concepto tridimensional de punto fue sustituido por el de evento. La magnitud de distancia se reemplaza por la magnitud de intervalo.

Relatividad general


Esquema bidimensional de la curvatura del espacio-tiempo (cuatro dimensiones) generada por una masa esférica.
La relatividad general fue publicada por Einstein en 1915, y fue presentada como conferencia en la Academia de Ciencias Prusiana el 25 de noviembre. La teoría generaliza el principio de relatividad de Einstein para un observador arbitrario. Esto implica que las ecuaciones de la teoría deben tener una forma de covariancia más general que la covariancia de Lorentz usada en la teoría de la relatividad especial. Además de esto, la teoría de la relatividad general propone que la propia geometría del espacio-tiempo se ve afectada por la presencia de materia, de lo cual resulta una teoría relativista del campo gravitatorio. De hecho la teoría de la relatividad general predice que el espacio-tiempo no será plano en presencia de materia y que la curvatura del espacio-tiempo será percibida como un campo gravitatorio.
Debe notarse que el matemático alemán David Hilbert escribió e hizo públicas las ecuaciones de la covarianza antes que Einstein. Ello resultó en no pocas acusaciones de plagio contra Einstein, pero probablemente sea más, porque es una teoría (o perspectiva) geométrica. La misma postula que la presencia de masa o energía «curva» al espacio-tiempo, y esta curvatura afecta la trayectoria de los cuerpos móviles e incluso la trayectoria de la luz.
Einstein expresó el propósito de la teoría de la relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos de inercia, incluso añadiendo la llamada constante cosmológica a sus ecuaciones de campo para este propósito. Este punto de contacto real de la influencia de Ernst Mach fue claramente identificado en 1918, cuando Einstein distingue lo que él bautizó como el principio de Mach (los efectos inerciales se derivan de la interacción de los cuerpos) del principio de la relatividad general, que se interpreta ahora como el principio de covarianza general.

Predecibilidad

Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. No se trata sólo de “decir antes”, sino de “decirlo bien”, o sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el futuro con cierto éxito.
Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable que se considere representativa de una cierta situación.
También se pueden hacer predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos extremos, caso por ejemplo de los huracanes y tormentas tropicales
Normalmente ambos tipos de predicción están ligados y se realizan a la vez, como lo prueban los productos que ofrecen las s grandes agencias e institutos de Meteorología y Climatología.
Pueden construirse de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas mediante diversas técnicas, estudiando y comparando los resultados.

CAOS

Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro; complicando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinismos  es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.
Los sistemas dinámicos se pueden clasificar básicamente en:
Estables, Inestables, Caóticos.
Un sistema estable tiende a lo largo del tiempo a un punto, u órbita, según su dimensión (a tractor o sumidero). Un sistema inestable se escapa de los atractores. Y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un a tractor por el que el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un a tractor fijo.

A tractores extraños
La mayoría de los tipos de movimientos mencionados en la teoría anterior suceden alrededor de a tractores muy simples, tales como puntos y curvas circulares llamadas ciclos límite. En cambio, el movimiento caótico está ligado a lo que se conoce como a tractores extraños, que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso a tractor de Lorenz conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.
EFECTO MARIPOSA La idea de la que parte la Teoría del Caos es simple: en determinados sistemas naturales, pequeños cambios en las condiciones iniciales conducen a enormes discrepancias en los resultados. Este principio suele llamarse efecto mariposa debido a que, en meteorología, la naturaleza no lineal de la atmósfera ha hecho afirmar que es posible que el aleteo de una mariposa en determinado lugar y momento, pueda ser la causa de un terrible huracán varios meses más tarde en la otra punta del globo.