martes, 6 de mayo de 2014

LUZ Y ESPEJOS


LUZ
se llama luz (del latín luxlucis) a la parte de la radiación electromagnética que puede ser percibida por el ojo humano. En física, el término luz se usa en un sentido más amplio e incluye todo el campo de la radiación conocido como espectro electromagnético, mientras que la expresión luz visible señala específicamente la radiación en el espectro visible.
La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones.
El estudio de la luz revela una serie de características y efectos al interactuar con la materia, que permiten desarrollar algunas teorías sobre su naturaleza.


Velocidad finita

Se ha demostrado teórica y experimentalmente que la luz tiene una velocidad finita. La primera medición con éxito fue hecha por el astrónomo danés Ole Roemer en1676 y desde entonces numerosos experimentos han mejorado la precisión con la que se conoce el dato. Actualmente el valor exacto aceptado para la velocidad de la luz en el vacío es de 299.792.458 m/s.1
La velocidad de la luz al propagarse a través de la materia es menor que a través del vacío y depende de las propiedades dieléctricas del medio y de la energía de la luz. La relación entre la velocidad de la luz en el vacío y en un medio se denomina índice de refracción del medio: n = \frac{c}{v}



Propagación y difracción

Sombra de una canica.
Una de las propiedades de la luz más evidentes a simple vista es que se propaga en línea recta. Lo podemos ver, por ejemplo, en la propagación de un rayo de luz a través de ambientes polvorientos o de atmósferas saturadas. La óptica geométrica parte de esta premisa para predecir la posición de la luz, en un determinado momento, a lo largo de su transmisión.
De la propagación de la luz y su encuentro con objetos surgen las sombras. Si interponemos un cuerpo opaco en el camino de la luz y a continuación una pantalla, obtendremos sobre ella la sombra del cuerpo. Si el origen de la luz o foco se encuentra lejos del cuerpo, de tal forma que, relativamente, sea más pequeño que el cuerpo, se producirá una sombra definida. Si se acerca el foco al cuerpo surgirá una sombra en la que se distinguen una región más clara denominada penumbra y otra más oscura denominada umbra.
Sin embargo, la luz no siempre se propaga en línea recta. Cuando la luz atraviesa un obstáculo puntiagudo o una abertura estrecha, el rayo se curva ligeramente. Este fenómeno, denominado difracción, es el responsable de que al mirar a través de un agujero muy pequeño todo se vea distorsionado o de que los telescopios y microscopios tengan un número de aumentos máximo.

Interferencia

Experimento de Young.
La forma más sencilla de estudiar el fenómeno de la interferencia es con el denominado experimento de Young que consiste en hacer incidir luz monocromática (de un solo color) en una pantalla que tiene rendija muy estrecha. La luz difractada que sale de dicha rendija se vuelve a hacer incidir en otra pantalla con una doble rendija. La luz procedente de las dos rendijas se combina en una tercera pantalla produciendo bandas alternativas claras y oscuras.
El fenómeno de las interferencias se puede ver también de forma natural en las manchas de aceite sobre los charcos de agua o en la cara con información de los discos compactos; ambos tienen una superficie que, cuando se ilumina con luz blanca, la difracta, produciéndose una cancelación por interferencias, en función del ángulo de incidencia de la luz, de cada uno de los colores que contiene, permitiendo verlos separados, como en un arco iris.

Reflexión y dispersión

Pez ballesta reflejado.
Al incidir la luz en un cuerpo, la materia de la que está constituido retiene unos instantes su energía y a continuación la reemite en todas las direcciones. Este fenómeno es denominado reflexión. Sin embargo, en superficies ópticamente lisas, debido a interferencias destructivas, la mayor parte de la radiación se pierde, excepto la que se propaga con el mismo ángulo que incidió. Ejemplos simples de este efecto son los espejos, los metales pulidos o el agua de un río (que tiene el fondo oscuro).
La luz también se refleja por medio del fenómeno denominado reflexión interna total, que se produce cuando un rayo de luz, intenta salir de un medio en que su velocidad es más lenta a otro más rápido, con un determinado ángulo. Se produce una refracción de tal modo que no es capaz de atravesar la superficie entre ambos medios reflejándose completamente. Esta reflexión es la responsable de los destellos en un diamante tallado.
En el vacío, la velocidad es la misma para todas las longitudes de onda del espectro visible, pero cuando atraviesa sustancias materiales la velocidad se reduce y varía para cada una de las distintas longitudes de onda del espectro, este efecto se denomina dispersión. Gracias a este fenómeno podemos ver los colores del arcoíris. El color azul del cielo se debe a la luz del sol dispersada por la atmósfera. El color blanco de las nubes o el de la leche también se debe a la dispersión de la luz por las gotitas de agua o por las partículas de grasa en suspensión que contienen respectivamente.

Polarización

Polarizador.
El fenómeno de la polarización se observa en unos cristales determinados que individualmente son transparentes. Sin embargo, si se colocan dos en serie, paralelos entre sí y con uno girado un determinado ángulo con respecto al otro, la luz no puede atravesarlos. Si se va rotando uno de los cristales, la luz empieza a atravesarlos alcanzándose la máxima intensidad cuando se ha rotado el cristal 90°sexagesimales respecto al ángulo de total oscuridad.
También se puede obtener luz polarizada a través de la reflexión de la luz. La luz reflejada está parcial o totalmente polarizada dependiendo del ángulo de incidencia. El ángulo que provoca una polarización total se llama ángulo de Brewster.
Muchas gafas de sol y filtros para cámaras incluyen cristales polarizadores para eliminar reflejos molestos.

ESPEJO
Un espejo (del lat. specullum) es una superficie pulida en la que al incidir la luz, se refleja siguiendo las leyes de la reflexión.
El ejemplo más sencillo es el espejo plano. En este último, un haz de rayos de luz paralelos puede cambiar de dirección completamente en conjunto y continuar siendo un haz de rayos paralelos, pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real. La imagen resulta derecha pero invertida en el eje normal al espejo.
También existen espejos curvos que pueden ser cóncavos o convexos. En un espejo cóncavo cuya superficie forma un paraboloide de revolución, todos los rayos que inciden paralelos al eje del espejo, se reflejan pasando por el foco, y los que inciden pasando por el foco, se reflejan paralelos al eje.


Existen distintos tipos de espejos según las características que presenten:

Planos: estos espejos presentan una superficie lisa sumamente pulida. La imagen que dan estos espejos es como si el objeto reflejado se ubicara por detrás de la superficie del mismo, y no enfrente, como si se encontrara en el interior del mismo. Es por esto que se dice que la imagen que crea es virtual. Además, la imagen se caracteriza por ser simétrica, de igual tamaño al del objeto reflejado, derecha, es decir que mantiene la misma orientación que el reflejo La luz que se refleja en el espejo plano cumple con las leyes de la reflexión.




Cóncavos: estos espejos se caracterizan por tener su superficie en forma de paraboloide donde su lado reflexivo se ubica en el interior del mismo, es decir dentro de su curvatura. En estos espejos, la ley de reflexión se cumple sólo cuando los rayos de luz que son emanados por el objeto son paralelos al eje central del espejo. Los espejos cóncavos pueden mostrar imágenes reales yvirtuales. La primera se da cuando la imagen se encuentra del mismo lado que el objeto, en relación al espejo. La virtual, como se mencionó anteriormente, muestra al objeto y a la imagen en lados diferentes. Las características de la imagen, ya sea la orientación, distancia y altura son determinadas por la distancia en la que se ubique el objeto respecto del espejo.




Convexos: en estos espejos, que también son una porción esférica, su parte reflexiva se ubica al exterior del mismo. No muestran imágenes reales porque los rayos de luz emanados del objeto no se intersecan entre sí, sino que se divergen tras rebotar, por lo tanto, imágenes que reflejan son siempre virtuales.

REFRACCIÓN Y LENTE


REFRACCIÓN

 refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Solo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si estos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad de propagación de la onda señalada.
Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luzh atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total. Aunque el fenómeno de la refracción se observa frecuentemente en ondas electromagnéticas como la luz, el concepto es aplicable a cualquier tipo de onda.

Explicación física

Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de rapidez y un cambio de dirección si no incide perpendicularmente en la superficie. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell. Esta ley, así como la refracción en medios no homogéneos, son consecuencia del principio de Fermat, que indica que la luz se propaga entre dos puntos siguiendo la trayectoria de recorrido óptico de menor tiempo.
Lápiz "quebrado" debido a la refracción.
Por otro lado, la velocidad de la penetración de la luz en un medio distinto del vacío está en relación con la longitud de la onda y, cuando un haz de luz blanca pasa de un medio a otro, cada color sufre una ligera desviación. Este fenómeno es conocido como dispersión de la luz. Por ejemplo, al llegar a un medio más denso, las ondas más cortas pierden velocidad sobre las largas (ej: cuando la luz blanca atraviesa un prisma). Las longitudes de onda corta son hasta 4 veces más dispersadas que las largas lo cual explica que el cielo se vea azulado, ya que para esa gama de colores el índice de refracción es mayor y se dispersa más.
En la refracción se cumplen las leyes deducidas por Huygens que rigen todo el movimiento ondulatorio:
  • El rayo incidente, el reflejado y el refractado se encuentran en el mismo plano.
  • Los ángulos de incidencia y reflexión son iguales, entendiendo por tales los que forman respectivamente el rayo incidente y el reflejado con la perpendicular (llamada Normal) a la superficie de separación trazada en el punto de incidencia.
La velocidad de la luz depende del medio por el que viaje, por lo que es más lenta cuanto más denso sea el material y viceversa. Por ello, cuando la luz pasa de un medio menos denso (aire) a otro más denso (cristal), el rayo de luz es refractado acercándose a la normal y por tanto, el ángulo de refracción será más pequeño que el ángulo de incidencia. Del mismo modo, si el rayo de luz pasa de un medio más denso a uno menos denso, será refractado alejándose de la normal y, por tanto, el ángulo de incidencia será menor que el de refracción. Así podemos decir que la refracción es el cambio de dirección de la propagación que experimenta la luz al pasar de un medio a otro

Índice de refracción

Es la relación entre la velocidad de propagación de la onda en un medio de referencia (por ejemplo el vacío para las ondas electromagnéticas) y su velocidad en el medio del que se trate.
Ángulo crítico: cualquier rayo que incida con un ángulo θ1 mayor al ángulo crítico θc correspondiente a ese par de sustancias, se reflejará en la interfase en lugar de refractarse.

Refracción de ondas de radio

El fenómeno de la refracción se observa en todo tipo de ondas. En el caso de las ondas de radio, la refracción es especialmente importante en la ionosfera, en la que se producen una serie continua de refracciones que permiten a las ondas de radio viajar de un punto del planeta a otro.

Refracción de ondas sísmicas

Otro ejemplo de refracción no ligado a ondas electromagnéticas es el de las ondas sísmicas. La velocidad de propagación de las ondas sísmicas depende de la densidad del medio de propagación y, por lo tanto, de la profundidad y de la composición de la región atravesada por las ondas. Se producen fenómenos de refracción en los siguientes casos:
  • Refracción entre la transición entre dos capas geológicas, especialmente entre el manto terrestre y el núcleo de la Tierra.
  • En el manto, por pequeñas desviaciones de la densidad entre capas ascendentes menos densas y descendentes, más densas.

Ley de refracción (Ley de Snell)

La relación entre el seno del ángulo de incidencia y el seno del ángulo de refracción es igual a la razón entre la velocidad de la onda en el primer medio y la velocidad de la onda en el segundo medio, o bien puede entenderse como el producto del índice de refracción del primer medio por el seno del ángulo de incidencia es igual al producto del índice de refracción del segundo medio por el seno del ángulo de refracción, esto es:
n_1\sin\theta_1 = n_2\sin\theta_2\
  • n_{1}: índice de refracción del primer medio
  • \theta_{1}: ángulo de incidencia
  • n_{2}: índice de refracción del segundo medio
  • \theta_{2}: ángulo de refracción




LENTE


Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva.
Las lentes más comunes están basadas en el distinto grado de refracción que experimentan los rayos al incidir en puntos diferentes del lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas, anteojos o lentillas. También se usan lentes, o combinaciones de lentes y espejos, en telescopios y microscopios, con la función de servir como objetivos como oculares. El primer telescopio astronómico fue construido por Galileo Galilei usando una lente convergente (lente positiva) como objetivo y otra divergente (lente negativa) como ocular. Existen también instrumentos capaces de hacer converger o divergir otros tipos de ondas electromagnéticas y a los que se les denomina también lentes. Por ejemplo, en los microscopios electrónicos las lentes son de carácter magnético.
En astrofísica es posible observar fenómenos de lentes gravitatorias, cuando la luz procedente de objetos muy lejanos pasa cerca de objetos masivos, y se curva en su trayectoria.


Etimología

La palabra lente proviene del latín "lens, lentis" que significa "lenteja" con lo que a las lentes ópticas se las denomina así por parecido de forma con la legumbre.
En el siglo XIII empezaron a fabricarse pequeños discos de vidrio que podían montarse sobre un marco. Fueron las primeras gafas de libros o gafas de lectura.

Tipos de Lentes

Las lentes, según la forma que adopten pueden ser convergentes o divergentes.
Las lentes convergentes (o positivas) son más gruesas por su parte central y más estrechas en los bordes. Se denominan así debido a que unen (convergen), en un punto determinado que se denomina foco imagen, todo haz de rayos paralelos al eje principal que pase por ellas. Pueden ser:
  • Biconvexas
  • Planoconvexas
  • Cóncavo-convexas
Las lentes divergentes (o negativas) son más gruesas por los bordes y presentan una estrechez muy pronunciada en el centro. Se denominan así porque hacen divergir (separan) todo haz de rayos paralelos al eje principal que pase por ellas, sus prolongaciones convergen en el foco imagen que está a la izquierda, al contrario que las convergentes, cuyo foco imagen se encuentra a la derecha. Pueden ser:
  • Bicóncavas
  • Planocóncavas
  • Convexo-cóncavas

Lentes artificiales

Se suele denominar lentes artificiales a las construidas con materiales artificiales no homogéneos, de modo que su comportamiento exhibe índices de refracción menores que la unidad (conviene recordar que la velocidad de fase sí puede ser mayor que la velocidad de la luz en el vacío), con lo que, por ejemplo, se tienen lentes biconvexas divergentes. Nuevamente este tipo de lentes es útil en microondas y sólo últimamente se han descrito materiales con esta propiedad a frecuencias ópticas.

lunes, 5 de mayo de 2014

CIRCUITOS DE CORRIENTE ALTERNA, R-L, R-C Y R-L-C

Circuitos de corriente alterna.

Existen tres tipos o clases de receptores, las resistencias, las bobinas y los condensadores. Pues bien, ahora vamos a analizar como se comportan estos receptores cuando se les somete a la circulación de una corriente alterna.

Circuito con resistencia

circuito con resistencia circuitos de corriente alterna

En este tipo de circuito, tanto la intensidad como la tensión se encuentran en fase entre ellas. También, podemos decir que se cumple la ley de ohm, aunque los valores no son los totales, es decir, hay que utilizar la tensión y la intensidad eficaz, nunca la de pico. Este es un error frecuente cuando se efectúan cálculos con este tipo de circuitos. Así que disponemos de la siguiente ecuación con los valores de la tensión y la intensidad eficaces:

corriente alterna

Asimismo, sabemos que una resistencia tiene un consumo calorífico y, por lo tanto, podemos calcular la potencia de la resistencia con estas dos fórmulas, que vienen a ser lo mismo pero expresado de diferente manera:

corriente alterna corriente alterna

Circuito con bobina

circuito de bobina circuitos de corriente alterna

Si hacemos circular una corriente alterna por una bobina, aparecerá un campo magnético. Las líneas de fuerza generadas en ese campo magnético cortan a los conductores de la bobina, por tanto, se genera unas f.e.m. que se oponen a la corriente que las ha generado (ley de Lenz).
Ahora bien, según lo dicho, como la corriente es alterna cuando la función senoidal tiende a subir también lo hace el campo magnético y, aparecen las f.e.m. que oponen una resistencia a la corriente. Esta es la razón, por la cual, la intensidad siempre se desfasa 90° respecto a la tensión en un circuito con una bobina.
Cuando la función senoidal de la corriente disminuye, el campo magnético también disminuye, pero se producen otras f.e.m. que oponen resistencia a que desaparezca la corriente, en este momento, se dice que la bobina descarga sobre el generador el campo magnético generado.
La oposición que realizan las f.e.m. se denominan reactancia inductiva y es un concepto que se puede calcular con la siguiente ecuación:

circuitos de corriente alterna

Donde:
XL: Es la reactancia inductiva expresada en ohmios.
f: Es la frecuencia expresada en hertzios.
L: Es el coeficiente de autoinducción de la bobina, expresada en henrios.

Si queremos calcular la intensidad, usaremos la siguiente fórmula teniendo en cuenta de que, tanto la tensión como la intensidad, son valores eficaces:

circuitos de corriente alterna

Como ya sabemos, los valtímetros están para medir las potencias. En el caso de un circuito con bobina no es posible medir la potencia porque su valor es cero (siempre que la bobina sea pura, es decir, en la teoría). Esto sucede porque con un circuito con bobina pura, no existe ningún consumo de energía, pues el campo magnético es devuelto intacto al generador sin haber ocasionado consumo alguno (en la teoría).
Aún así, circula cierta intensidad por los conductores con las cargas y descargas de la bobina que genera cierta potencia reactiva variable, cuya ecuación para poder calcularla es :

circuitos de corriente alterna

Y que se mide en voltiamperios reactivos VAR.

Circuito con condensador

circuitos de condensador circuitos de corriente alterna

Cuando conectamos un condensador a un generador de corriente alterna, sucede que, mientras se esta cargando el condensador, la tensión va creciendo, mientras que la intensidad va disminuyendo. Por este motivo, podemos decir que en un circuito con condensador primero aparece la intensidad y después la tensión. Este adelanto de la intensidad respecto a la tensión corresponde a 90°.
A la resistencia que hace el condensador a la corriente se le denominareactancia capacitiva (Xc), cuya fórmula para poder calcularla es:

analisis de circuitos de corriente alterna

En el caso que deseemos calcular su intensidad o tensión eficaces, usaremos la fórmula:

analisis de circuitos de corriente alterna

En un condensador la medición de la potencia con un valtímetro da como resultado 0, lo mismo que ocurre con un circuito con bobina. Esto es así porque en los 90° de carga del condensador, el condensador se carga de energía electrostática. Una vez se ha cargado el condensador, en los siguientes 90° el condensador devuelve la energía al generador con su propia descarga.
La potencia generada se encuentra en el intercambio constante de energía entre el condensador y el generador y, viceversa. Así, tenemos una potencia reactiva Qc que se mide, al igual que con el circuito de la bobina, en voltiamperios reactivos (VAR) y, cuya fórmula es:



analisis de circuitos de corriente alterna





Circuito RL

Un circuito RL es un circuito eléctrico que contiene una resistencia y una bobina en serie. Se dice que la bobina se opone transitoriamente al establecimiento de una corriente en el circuito.
La ecuación diferencial que rige el circuito es la siguiente:

Circuito RL en serie.
U = L\frac{di}{dt}+R_t.i
Donde:
  • U es la tensión en los bornes de montaje, en V;
  • i es la intensidad de corriente eléctrica en A;
  • L es la inductancia de la bobina en H;
  • R_t es la resistencia total del circuito en .
La solución general, asociada a la condición inicial i_{bobina}(t=0) = 0, es:
i_{bobina} = \frac{U}{R_t}(1 - e^{-\frac{t}{\tau}})
\tau = \frac{L}{R_t}
Donde:
  • i_{bobina} es la intensidad de la corriente eléctrica del montaje, en A ;
  • L es la inductancia de la bobina en H ;
  • R_t es la resistencia total del circuito en Ω ;
  • U es la tensión del generador, en V ;
  • t es el tiempo en s ;
  • \tau es la constante de tiempo del circuito, en s.
La constante de tiempo \tau caracteriza la « duración » del régimen transitorio. Así, la corriente permanente del circuito se establece a 1% después de una duración de 5 \tau.
Cuando la corriente se convierte en permanente, la ecuación se simplifica en U = R_t.i, ya que L\frac{di}{dt} = 0 .

El circuito eléctrico RL más simple está formado por una resistencia,un inductor o bobina y una fuente de alimentación conectados en serie.
Circuito RL en serie.png
  • En una resistencia R, la Ley de Ohm establece
    i(t)=V(t)R
  • En un inductor L la Ley de Faraday dice
    V(t)=Ldidt(t)
Donde i(t)es la intensidad de corriente, V(t) el voltaje, R la resistencia y L la inductancia de la bobina.
Las leyes de Kirchoff dicen:
  1. Ley de corrientes: En cada nodo, la suma de corrientes que entra es igual a la que sale.
  2. Ley de tensiones: En cada ciclo cerrado, la suma de diferenciales de potencias es nula.



Los circuitos RC son circuitos que están compuestos por una resistencia y un condensador.  
Se caracteriza por que la corriente puede variar con el tiempo. Cuando el tiempo es igual a cero, el condensador está descargado, en el momento que empieza a correr el tiempo, el condensador comienza a cargarse ya que hay una corriente en el circuito. Debido al espacio entre las placas del condensador, en el circuito no circula corriente, es por eso que se utiliza una resistencia.



 

 



Cuando el condensador se carga completamente, la corriente en el circuito es igual a cero.
La segunda regla de Kirchoff dice:  V = (IR) – (q/C)
Donde q/C es la diferencia de potencial en el condensador.
En un tiempo igual a cero, la corriente será:  I = V/R  cuando el condensador no se ha cargado.
Cuando el condensador se ha cargado comple
tamente, la corriente es cero y la carga será igual a: Q = CV






Circuito RLC

En electrodinámica un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y un condensador (capacitancia).
Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describen generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primero orden).
Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno de resonancia, caracterizado por un aumento de la corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencial que lo rige).

Circuito RLC en serie


Circuito RLC en serie.

Circuito sometido a un escalón de tensión

Si un circuito RLC en serie es sometido a un escalón de tensión E \, , la ley de las mallas impone la relación:
E = u_C + u_L + u_R = u_C + L \frac{di}{dt} + R_ti
Introduciendo la relación característica de un condensador:
 i_C = i = C \frac{du_C}{dt}
Se obtiene la ecuación diferencial de segundo orden:
E = u_C +  LC \frac{d^2u_C}{dt^2} + R_tC \frac{du_C}{dt}
Donde:
  • E es la fuerza electromotriz de un generador, en Voltios (V);
  • uC es la tensión en los bornes de un condensador, en Voltios (V);
  • L es la inductancia de la bobina, en Henrios (H);
  • i es la intensidad de corriente eléctrica en el circuito, en Amperios (A);
  • q es la carga eléctrica del condensador, en Coulombs (C);
  • C es la capacidad eléctrica del condensador, en Faradios (F);
  • Rt es la resistencia total del circuito, en Ohmios (Ω);
  • t es el tiempo en segundos (s)
En el casos de un régimen sin pérdidas, esto es para R_t = 0 \, , se obtiene una solución de la forma:
u_c = E \cos \left( \frac{2 \pi t}{T_0} + \varphi \right)
 T_0 = 2\pi \sqrt{LC}
Donde:
  • T0 el periodo de oscilación, en segundos;
  • φ la fase en el origen (lo más habitual es elegirla para que φ = 0)
Lo que resulta:
 f_0 = \frac{1}{2\pi \sqrt{LC}}
Donde f_0 es la frecuencia de resonancia, en hercios (Hz).

Circuitos sometidos a una tensión sinusoida

La transformación compleja aplicada a las diferentes tensiones permite escribir la ley de las mallas bajo la forma siguiente:
\underline {U_G} = \underline {U_C} +\underline {U_L} +\underline {U_R}
siendo, introduciendo las impedancias complejas:
\underline {U_G} = - \frac{j}{C \omega} \underline I + j L \omega \underline I + R_{t} \underline I = \bigg[ R_t + j \frac{LC \omega^2 - 1}{C \omega} \bigg]  \underline I
La frecuencia angular de resonancia en intensidad de este circuito ω0 es dada por:
\omega_0= \frac{1}{\sqrt{LC}}
Para esta frecuencia la relación de arriba se convierte en:
\underline {U_G} = \underline {U_R} = R_t \underline I
y se obtiene: \underline {U_L} = - \underline {U_C} = \frac{j}{R_t} \sqrt{\frac{L}{C}} \underline {U_G}

Circuito RLC en paralelo


Circuito RLC en paralelo.
 i_r     =  \frac{u}{R}
 \frac{di_l}{dt} = \frac{u}{L}
 i_c = \frac{dq}{dt} = C \frac{du}{dt}
ya que  q = C u\,
 i = i_r + i_l + i_c \,
 \frac{di}{dt} = C \frac{d^2u}{dt^2} + \frac{1}{R} \frac{du}{dt} + \frac{u}{L}
Atención, la rama C es un corto-circuito: no se pueden unir las ramas A y B directamente a los bornes de un generador E, se les debe adjuntar una resistencia.
Las dos condiciones iniciales son:
  •  i_{l0} \, conserva su valor antes de la puesta en tensión (porque la inductancia se opone a la variación de corriente).
  •  q_0 \, conserva su valor antes de la puesta en tensión  u_0 = \frac{q_0}{C}.

Circuito sometido a una tensión sinusoidal[editar]

La transformación compleja aplicada a las diferentes intensidades proporciona:
\underline I=\underline {I_r} + \underline {I_l} +\underline {I_c}
Siendo, introduciendo las impedancias complejas:
\underline I = \frac{1}{R} \underline U + \frac{1}{j L \omega} \underline U + j C \omega \underline U
siendo : \underline I = \left[ \frac{1}{R} + j (C \omega - \frac{1}{L \omega}) \right] \underline U
La frecuencia angular de resonancia en intensidad de este circuito ω0 es dada por:
\omega_0 = \frac{1}{\sqrt{LC}}
Para esta frecuencia la relación de arriba se convierte en:
\underline I = \underline {I_r} = \frac{1}{R}\underline U
y se obtiene: \underline {I_c} = -\underline {I_l} = j \sqrt{ \frac{C}{L}} \underline U