domingo, 16 de junio de 2013

DENSIDAD

En física y química, la densidad (símbolo ρ) es una magnitud escalar referida a la cantidad de masa contenida en un determinado volumen de una sustancia. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
\rho = \frac{m}{V}\,
Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión pequeños volúmenes decrecientes \Delta V_k (convergiendo hacia un volumen muy pequeño) y estén centrados alrededor de un punto, siendo \Delta m_k la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos esos volúmenes:
\rho(x) = \lim_{k \to \infty} \frac{\Delta m_k}{\Delta V_k} \approx \frac{dm}{dV}
La unidad es kg/m3 en el SI.
Como ejemplo, un objeto de plomo es más denso que otro de corcho, con independencia del tamaño y masa

Tipos de densidad

Absoluta

La densidad o densidad absoluta es la magnitud que expresa la relación entre la masa y el volumen de una sustancia. Su unidad en el Sistema Internacional es kilogramo por metro cúbico (kg/m3), aunque frecuentemente también es expresada en g/cm3. La densidad es una magnitud intensiva.
\rho = \frac {m}{V}
siendo \rho, la densidad; m, la masa; y V, el volumen de la sustancia.

Relativa

La densidad relativa de una sustancia es la relación existente entre su densidad y la de otra sustancia de referencia; en consecuencia, es una magnitud adimensional (sin unidades)
\rho_r = \frac {\rho}{\rho_0}
donde \rho_r es la densidad relativa, \rho es la densidad de la sustancia, y \rho_0 es la densidad de referencia o absoluta.
Para los líquidos y los sólidos, la densidad de referencia habitual es la del agua líquida a la presión de 1 atm y la temperatura de 4 °C. En esas condiciones, la densidad absoluta del agua destilada es de 1000 kg/m3, es decir, 1 kg/dm3.
Para los gases, la densidad de referencia habitual es la del aire a la presión de 1 atm y la temperatura de 0 °C.

Media y puntual

Para un sistema homogéneo, la expresión masa/volumen puede aplicarse en cualquier región del sistema obteniendo siempre el mismo resultado.
Sin embargo, un sistema heterogéneo no presenta la misma densidad en partes diferentes. En este caso, hay que medir la "densidad media", dividiendo la masa del objeto por su volumen o la "densidad puntual" que será distinta en cada punto, posición o porción "infinitesimal" del sistema, y que vendrá definida por:
\rho = 
\lim_{V \to 0} \frac {m}{V} =
\frac {d m}{d V}
Sin embargo debe tenerse que las hipótesis de la mecánica de medios continuos sólo son válidas hasta escalas de \scriptstyle 10^{-8}\ \mathrm{m}, ya que a escalas atómicas la densidad no está bien definida. Por ejemplo el núcleo atómico es cerca de \scriptstyle 10^{13} superior a la de la materia ordinaria.

Aparente y real

La densidad aparente es una magnitud aplicada en materiales porosos como el suelo, los cuales forman cuerpos heterogéneos con intersticios de aire u otra sustancia normalmente más ligera, de forma que la densidad total del cuerpo es menor que la densidad del material poroso si se compactase.
En el caso de un material mezclado con aire se tiene:
\rho_{ap} = \frac {m_{ap}}{V_{ap}} = \frac {m_r + m_{aire}}{V_r + V_{aire}}
La densidad aparente de un material no es una propiedad intrínseca del material y depende de su compactación.
La densidad aparente del suelo (Da) se obtiene secando una muestra de suelo de un volumen conocido a 105 °C hasta peso constante.
Da = {W_{SS}\over V_S}
Donde:
WSS: Peso de suelo secado a 105 °C hasta peso constante.
VS: Volumen original de la muestra de suelo.
Se debe considerar que para muestras de suelo que varíen su volumen al momento del secado, como suelos con alta concentración de arcillas 2:1, se debe expresar el contenido de agua que poseía la muestra al momento de tomar el volumen.


Cambios de densidad

En general, la densidad de una sustancia varía cuando cambia la presión o la temperatura, y en los cambios de estado.
  • Cuando aumenta la presión, la densidad de cualquier material estable también aumenta.
  • Como regla general, al aumentar la temperatura, la densidad disminuye (si la presión permanece constante). Sin embargo, existen notables excepciones a esta regla. Por ejemplo, la densidad del agua crece entre el punto de fusión (a 0 °C) y los 4 °C; algo similar ocurre con el silicio a bajas temperaturas.[cita requerida]
El efecto de la temperatura y la presión en los sólidos y líquidos es muy pequeño, por lo que típicamente la compresibilidad de un líquido o sólido es de 10–6 bar–1(1 bar=0,1 MPa) y el coeficiente de dilatación térmica es de 10–5 K–1.
Por otro lado, la densidad de los gases es fuertemente afectada por la presión y la temperatura. La ley de los gases ideales describe matemáticamente la relación entre estas tres magnitudes:
\rho = \frac {p\,M}{R\,T}
donde R\, es la constante universal de los gases ideales, p\, es la presión del gas, M\, su masa molar y T\, la temperatura absoluta.
Eso significa que un gas ideal a 300 K (27 °C) y 1 atm duplicará su densidad si se aumenta la presión a 2 atm manteniendo la temperatura constante o, alternativamente, se reduce su temperatura a 150 K manteniendo la presión constante..


No hay comentarios.:

Publicar un comentario